Core Orientation
Deep Ore Zone Project (2015)

Core orientation is the process by which the original in situ position or orientation of a core
cylinder is determined. Typically, a mark, groove, or line is placed on the surface of the core and
the in situ azimuth of the marking is determined with respect to geographic north.

Cores are oriented to facilitate measurement of directional properties in the rock. Most
routinely, orientation is used to measure large scale features such as bedding, cross-bedding,
fractures, flow textures, and stylolites.In recent years, oriented core has been used to establish
the directions of downhole stress and strain fields.

Core orientation techniques fall broadly into two categories: mechanical and core-based.

Mechanical orientation techniques
The industry standard for many years has been a mechanical orientation technique utilizing a
specially designed core barrel and nonmagnetic drill collar with a compass, camera, battery
pack, and timer.
The compass, camera, and timer system is mounted at the top of the inner core barrel, inside a
nonmagnetic collar. The battery-driven timer is set prior to running in the hole to expose a frame
of film automatically at intervals of 1 to 8 min. Each frame records the compass and the
position of a reference mark. As the coring assembly is made up, a lug on the compass is
aligned with a reference scribe (one of usually three knives set in a scribe shoe at the base of
the inner core barrel) . As the core is cut and enters the mouth of the barrel, grooves are cut in
the surface of the core by the scribe knives. Angles between the scribe knives vary between
coring companies, but the reference scribe is usually offset from the secondary knives by
oblique angles on the order of 130° to 150°. A preferred arrangement is an asymmetric scribe
shoe in which the angles from the reference scribe to each of the secondary scribes differs.
Such an arrangement allows up-down directions on the core to be distinguished easily.

At agreed upon depth intervals, pumps and rotation are shut down for a period of several
minutes to allow for a vibration-free film frame to be snapped. The process is repeated at
intervals until the core barrel is tripped out. At the surface, the film is retrieved and developed.
The azimuth of the compass lug, and hence of the reference groove, is then determined for the
depths at which vibration-free shots were taken. Results can be available at the wellsite within
hours of core retrieval. A recent refinement of this system uses a modified measurement while
drilling (MWD) unit to replace the camera and timer within the nonmagnetic collar. The unit is
powered by a battery pack and records azimuth data continuously. The recorded data are
retrieved from the unit when the barrel is tripped out. This system has the advantage that it is
not necessary to shut down pumps and rotation to record data.

Core-based orientation techniques

Core-based techniques rely at least in part on data derived from the core for orientation. If
bedding planes and fractures can be discerned in the core, it may be possible to use dipmeter
logs or data from borehole televiewers to determine the orientation of the core. Another
approach to core-based orientation involves analysis of naturally existing paleomagnetic
signals in rock to determine their relationship to present-day geographic north.

Paleomagnetic core orientation
The paleomagnetic technique is based on the fact that nearly all rocks, including quartzite,
chert, and chalk, contain at least trace amounts of magnetic minerals such as magnetite and
hematite. These minerals act as miniature compasses and lock-in the earth's ambient
magnetic field. A primary signal is imprinted near the time of deposition; over time, one or more
secondary signals may be overlain on the primary signal. In specially equipped laboratories,
the signals in rock samples can be separated, interpreted, and used to orient core to present-
day geographic north.
Paleomagnetic core orientation requires that a number of 1-in.-diameter plug samples be
collected from the core at the surface. The number of samples required to achieve a good
statistical result is dependent on the rock type and other factors. Plugs are then sent to a
laboratory for analysis, and core orientation results are typically returned in one to four weeks.
No core-based orientation technique can be considered to give real-time results. In each case,
recovered core must be analyzed or sampled. That data, combined with laboratory or borehole
information (wireline or televiewer runs) may not be available for days or months.

Advantages and disadvantages of core orientation techniques

Numerous studies have been done to determine the accuracy of different orientation
techniques. Nelson et al.provides a particularly comprehensive review of error sources for
mechanical orientation and comparisons of accuracy with other techniques. Core orientation
techniques are capable of achieving, under optimum conditions, accuracies of ≤5°. Sources
and severity of errors depend on many factors, some of which are listed here:
At high latitudes, most techniques are prone to failure for similar reasons: the inclination of the
ambient earth's field makes an accurate measurement of azimuth difficult.
High angle deviation of a borehole may exacerbate or reduce errors, depending on the direction
of deviation. In holes approaching horizontal, orientation of cores to geographic north loses its
meaning; up-down core directions then become important.
During mechanical core orientation, film or batteries can fail under high temperature conditions
(generally >240°F) or film may run out if downhole time is extended. Tandem systems are
recommended to reduce the chance of failure.
Scribe knives may break or be blunted in extremely hard formations; soft or unconsolidated
formations may be unsuitable for scribing because the scribe knife may not leave a permanent
core groove.

Dipmeter and borehole televiewer
Dipmeters and borehole televiewers must detect formation contrast to be effective orientation
tools. Formations that have apparent bedding dips at right angles or parallel to the core axis
and limited changes in bedding attitude over the length of the core may not be appropriate for
orientation by dipmeter or televiewer. If fractures are absent or abundant, or only at right angles
to the core axis, results may also be unusable for orientation. Studies by Hocker et al.offer
some indication of the limits of resolution possible using one contemporary dipmeter tool.

Mechanical core orientation
Mechanical core orientation relies on a premeasured relationship being maintained between
the compass lug at the top of the core barrel and the reference scribe at the bottom of the core
barrel. Depending on barrel length, there are one or more makeup joints between the two
components subject to torquing during coring rotation. Furthermore, the grooves in the core
tend to precess along the length of the core. Hence, orientation accuracy in part depends on the
ability to recognize and quantify these effects. Nelson et al.[6] and Bleakly et al.b[8] describe
graphic and overlay techniques as well as wellsite procedures that can be used to recognize
and partially correct for such problems.

Paleomagnetic core orientation
Paleomagnetic orientation can be used in hard and soft formations and has been successfully
applied under very high temperature conditions in geothermal wells. The technique may not be
appropriate in uniformly very coarse grain sands, conglomerates, or brecciated formations.
Orientation accuracy is in part dependent on the quantity of magnetic material present in
samples; comparatively more samples must be taken from intervals exhibiting very weak
magnetic signals. Under some circumstances, collecting a statistically significant number of
samples may entail removal of an appreciable portion of the available core.

Core orientation quality
For best results, core orientation technique(s) should be selected on the basis of the operating
conditions and the ultimate applications of the results.
Proper core handling can enhance orientation quality regardless of the techniques selected
(also see “Core handling”). A primary goal of handling procedures is to reconstruct the core as
accurately and completely as possible immediately after recovery from the barrel. It is
recommended that an asymmetric scribe shoe be used on all core runs to aid reconstruction.
At the well site, cores should be carefully fitted together into continuous intervals, which are
defined as lengths of core in which each piece fits into the next. Continuous intervals can vary in
length from a few centimeters to 10 m or more. Intervals are nomally broken by drill string
connection points, core rubble zones, core spinoffs, and the tops and bottoms of core runs.
Each continuous interval should be marked with a continuous line or lines parallel to the axis of
the core. A right angle straight edge can be used to ensure that this master orientation line
(MOL) is parallel to the core's long axis. Placement of an MOL on each interval can be critical to
interpretation of orientation results after the core leaves the wellsite. If mechanical orientation
has been done, orientation results can be compared against measurements taken on the core,
using the MOL as a baseline.For core-based orientation techniques, the MOL can serve as the
orientation reference line.
Our Projects
2011-2015 Tembagapura
Core Orientation data
acquisition and
PT. Duaem Gada Bayuagus